If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+40x+1.5=0
a = 16; b = 40; c = +1.5;
Δ = b2-4ac
Δ = 402-4·16·1.5
Δ = 1504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1504}=\sqrt{16*94}=\sqrt{16}*\sqrt{94}=4\sqrt{94}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-4\sqrt{94}}{2*16}=\frac{-40-4\sqrt{94}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+4\sqrt{94}}{2*16}=\frac{-40+4\sqrt{94}}{32} $
| 15t+3t-12t-t+3=16 | | 5(4-2y)=(20+10y) | | 2x=9=5 | | 5x+7=−4x−11 | | 8.6+n=4 | | 30^x=1000 | | Y-0.9y=0.1y | | 256x+3=384x+5 | | 4x+11+2+1+7x-14=180 | | 2m+4m+11m=-17 | | 8(52x)+8(5x)=6 | | X+8y(-6)=-40 | | X+8y(-6)=-4 | | 5(x+2=5x+10 | | -8(3s-4)=-2s-9 | | -2=3(y-2)-y | | 71/2=34/5+p | | -2w^{2}+3w-14=0 | | 16v^2+18v=0 | | 4n²-22=27 | | 29=20-x | | (4-6x)-(-4x+5)-6x=0 | | √3x+1=3x+11 | | 40÷t=10 | | V/x-10=5 | | -6x-17=49 | | t=0.05 | | 3(g−11)=15 | | 7a-1-4a=-19 | | 11=1.6x | | 53+17=50+x | | x+82=72 |